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Thi% paper deals with the problem of designing the control action which 
stabilizes the otherwise unstable motion of the controlled object. The 
problem is complicated by the limitation on the flow of information in 
the feedback loop. The solution is based upon the theory of stability 
of motion [1,21, the theory of the analytic design of control systems 
[31 and the theory of controllability and observability of linear 
systems f41. A numerical example will be examined. 

1. Statement of the problem.. We shall consider a controlled 
object, the state of which is described by its phase coordinates zi(t) 
(t>O, i = 1, . ..) n). Let this object be confirmed by the directing 
influences u., (j = 1, . ..$ 
vector diffeiential equation 

r) t subject to the coordinates zi by the 

dzldt = fit, z, uf (f-1) 

Here f is a given n-dimensional vector function, z is an n-dimen- 
sional vector of coordinates (zi), u is the r-dimensional vector of the 
control forces (uj>. 

We shall assume that we examine the motion t = z”(t), which follows 
from (1.1) when u(t) s 0 and for some given initial conditions 
zO(O) = 20, i.e.. we are given the motion z = z”lt) which can accomplish 

the objective (1.1) in the absence of the control u, but which can be 
subject to the action of other (programmed) forces included implicitly 
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972 N.N. Krasouskii 

in the function f. Let the motion t = zo( t) ,described by equation (1~ 1) 
for u r 0 be unstable in the sense of Liapunov [l, p.ZOI . 

The problem consists in the dete~ination of the forces uj which will 
stablize the motion z”(t). Moreover, it is required that the system work 
according to the feedback principle, i.e. the quantities u. at each 
moment of the process must be determined by the continuousJstate of the 
object. ‘Ihe problem considered becomes, therefore, a problem of 
analytical design of a control system f3I. We shall assume, however, 
that the problem is complicated by the following circumstances. Let us 
assume that in the control process, we can measure only the quantities 

w]r =‘*, WE* related to zl, . . . , t, by the vector relation 

which cannot be solved unambiguously with respect to z. Therefore the 

sought control law must relate the values uj and wk. 

Let us define more accurately the formulation of the problem. We 
shall construct the equations of the perturbed motion tl, p.211 in the 
neig~rhood of the motion z”( t 1. 

Let x = t - z’(t). Then 

dX 
- = p It, x (t), 24 (01, dt p It, 2, ul = f It, 3 + 2 (Q, ul - f [t, 2” (1), 01 

Condition (1.2) in terms of the variables x and y = w - cpft, z” (t)I 

takes the form 

Y = 4 It, 21, g It, 51 = cp It, 2 -I- z” @)I - 9, [t, z* (01 (9.4) 

If the values of all coordinates xi(t) (i = 1, . ..$ n) in the control 
process could be measured and fed to the regulator, then the problem of 
stabilizing the motion x = 0 (i.e. the motion to(t)) would be for in- 
stance formulated as such: find the equation 

$ [u(m) (t), . . .( u tq, t, z @)I = 0 (1.5) 

such that the motion x = 0, #‘-I) = . . . = u = 0 is asymptotically stable 
[l, pp. 20, SSI by virtue of the equations of the perturbed motion (1.3) 
and (1.5). 

The degree m >O of equation (1.5) can be given, or it can be deter- 
mined by the additional conditions of the problem. 

In the case considered in this paper, the given statement of the 
problem cannot be used because of the impossibility of a direct measure 
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of the vector x(t). ?herefore we shall look for the possibility of sta- 

bilizing the motion x = 0 for regulators with delay. We shall limit our- 

selves to cases in which the regulator is described by an equation of 

first order (m = 1). Let us formulate the problem. 

Problem 1.1. Find a differential equation with delay 

du / dt = U [t, y (t + 6), u (t + S)] (-T<~<o, t=const>o) (1.6) 

such that the motion x = 0, u = 0 is asymptotically stable [5, p.1561 
by virtue of the equations of perturbed motion (1.3), (1.4) and (1.6). 

In equation (1.6) the coordinates of the r-dimensional vector U, the 

functionals Uj [t, Y(e), u(e)1 are defined for the continuous functions 

~~(6) and ui (ti) (- T<. 6 GO, j = 1, . . . , F; k = 1, . . . , 1). ‘he con- 

stant T > 0 can he given or it can be specified in the solution of the 

problem. 

Note 1.1. Inasmuch as the functionals Uj depend on the vector 

u(t +6), it is assumed that the forces u(t) developed by the regulator 

can be measured. It is also assumed that the values y(t) and u(t) can be 
put in memory for an interval of time of duration ‘T. 

1.2. The expediency of the introduction of the delay in the control 

law (1.6) is also substantiated by the fact that only in particular 

cases is the stabilization of an unstable motion x = 0 of system (1.3) 

possible by means of a control law of the form 

du/ dt= S It, y (t), u (f)] (1.7) 

where the vector y is defined by relation (1.4) which cannot be solved 

unambiguously with respect to x (see the example at the end of the 

paper, p. 1000). 

1.3. Problem 1.1 can also have the additional requirement of minimiz- 

ing some functional of the disturbed motions x(t), u(t) of system (1.3), 

(1.4) and (1.6). Then for instance, the following modification of Prob- 

lem 1.1 might arise. 

Problem 1.2. Find the differential equation with delay (1.6), such 

that the motion n = 0, u = 0 is asymptotically stable by virtue of the 

equations of the perturbed motion (1.3), (1.4) and (1.6) and moreover, 

such that for the motions x(t), u(t) of system (1.3), (1.4) and (1.6) 

the functional 

J It,, x0, u,; ul = rco it, IC (t), u (t), u(l) (t)l dt (1.8) 

i6 
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is minimized for all 
u( t,) = u0 for every 

sufficiently small perturbations x(t,) = x0, 

function of x, u, u( 
to > T. Here o[t, X, u, U( ‘11 is a given analytic 

I) (for every t St), positive definite with respect 
to z, u, U(l) [l, p.801 ; it is also assumed that the control process 
with respect to the equations (1.3), (1.4) and (1.6) begins when t = 0 
(U(1) = du/dt). 

In the present paper, methods for solving Problems 1.1 and 1.2 are 

considered, whereupon there is a summing up to some extent of some re- 

sults pertaining to the theory of the analytic design of regulators and 

to the similar problem of stabilizability, controllability and observ- 

ability of the controlled systems [3,4,6-g]. 

2. Statement of problem in linear approximation. Let the 
vector functions p[t, x, uI and q[t, xl in equations (1.3) and (1.4) be 
differentiable with respect to .x and u. ‘Ihen 

dzldt = P (t) z + B (t) u + 7 [t, 2, u], y = Q (4 2 + v It, zl (2.1) 

Here P(t) is an n x n-matrix {p .(t)), B(t) is an n x r-matrix 

{b * WI, Q(t) an Z x n-matrix {q .tf t)); the vector function y[t, x, ul 
aniJv[ t, ~1 have at the point n = ‘6, u=O for each t E [O, m), an 

order of smallness greater than that of the quantity 

p = 2 zip +i q_o 
[ 

(2.2) 
i=l j=l 

We shall assume that for all t >O the matrices P(t), B(t) and o(t) 
are continuous and uniformly bounded, and we shall also assume that the 

condition 

I7i It, 5, ~11 < epz, IVj [t, xl I< ep2 
(e>O, p<6, S>O, i=i ,..., n; i=i ,..., I) (2.3) 

is uniformly satisfied. 

‘Ihe linear approximation for the equations (1.3) and (1.4) has the 
form 

dz / dt = P (t)_z + B (t) u 

Y = Q 0) 2 
(2.4) 

(2.5) 

Therefore Problem 1.1 is formulated as such in the linear approxima- 

tion. 

Problem 2.1. Find the linear differential equation with delay 
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such that the motion x = 0, u = 0 is asymptotically stable by virtue of 

the equations of perturbed motion (2.4) to (2.6). 

Here Ylt, y(~), u(S)7 is an r-dimensional vector, the coordinates of 

which, Wj[t, y(6), UCS>I, are linear functionals ClO, p.1651 determined 
from the continuous functions y(6), u(6) (- T< 6 ,<O) and depending 

continuously on t for 0 ft < m, 

Problem 1.2 in the first approximation reduces to the following: let 

the function ok, n, u, u( "1 have an expansion 

0 It, 2, u, u(l)] = Q(i) + x = (2.7) 

= $ Gj Ct) Gzj + i dij (t) UiUj + i dij (t> Uicl)Uj(')+X ft, 5, U, UC')] 6)ill+~ 

i,j=I i.j=l i,j=l 

where the condition 

(t ho, u>o) (2.8) 

is satisfied for 

(6 > 0) 
i=l j=1 jmxl 

In addition to this, it is natural to assume that the forms 

are positive definite. 

'Ihen we have the problem. 

Problem 2.2. Find the differential equation (2.6) such that the 

motion x = 0, u = 0 is asymptotically stable on the basis of equations 

(2.4), (2.5) and (2.6), and such that, in such a case, for motions of 

x(t), u(t) of the system (2.4) to (2.6) the functional is minims for 

all n(t,) = x0, u(tgf = ug and to 2~. 

J, [to, 20, ul); ul = (2.9) 



976 N.N. Krasovskii 

= \ [ 2 [CiJ (t) Xi (t) Xj (t)l+ 2 l&j (t)ui (t) uj (I) + eij tt) 4(l) tt) uj(‘) tt)l] d.! 
to i.j=1 i.j=l 

Note 2.1. The assumption of linearity of equation (2.6) made before- 

hand does not reduce essentially the possibilities of solution of 

Problem 2.2, since it is known [31 that similar problems of the minimum 

of a quadratic functional have for solution a linear control law. 

3. Auxiliary definitions and spec'fications. Let C be some 

matrix. We shall designate by C*, C[J , C tS , Cij, C-' the transposed 

matrix of C, the ith line, the ith column, the (i, j)th element, and 

inverse matrix of C if it exists, respectively. Dy the symbol X[t , tl 
we shall denote the fundamental solution matrix for the equation 

dx / dt = P (t) x (3.1) 

Then X[lt,, t,] = E is the unit matrix. It is known [ll, p.1711 that 

equation 
d (X-l)* 
___ z - p* (x-l)* 

dt (3.2) 
is valid. 

The solution of equation (2.4) is determined by Cauchy’ s formula 

[ll, p. 1721 

J: (t) = x ito, tl 5 (to) + s x it ,,, tl X-l Ito, 61 B (e) u (6) da (3.3) 

Let T be some positive number. \‘ie shall denote by ff[t, T, 61 the 

following n x r-matrix 

H It. z, fi] = X It, t + zl X-’ [t, t -‘r 61 B (t + 6) (t >o, o< 6 Q t) (3.4) 

We shall denote by the symbol )I c\IT h t e norm of the vector-function 

{ci(f))) (’ = 1, ...I ‘, O,( sit) 

(ICIIT’(~[~ ciyqpy (3.5) 
0 i=l 

Definition 3.1. Equation (2.4) satisfies the condition (3.1, T) if 

the quadratic form of the variables h i(i = 1, . . . , n) 

is positive definite (with respect to t). 

Condition (3.1, T) 11 y I a s an important role in the theory of the 

controllability of linear systems 1141. This condition means that for 
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every t, the rows Hii] of the matrix H[t, T, fif are linearly inde- 

pendent vector functions of 6 (- T< fi,<O) and this linear independ- 
ence in scme sense is uniform with respect to t. We shall call condi- 

tion (3.1, T) strong if it includes, besides the Definition 3.1, the 

condition that for every j and t > 0 the inequality 

i hihij It, 2, 61 # 0 for i&t + 0 almost everywhere for 0 < 6 <t (3.7) 
id f-l 

is satisfied. 

lhis last condition was met in control problems [12-151. 

Let us consider the auxiliary system of equations 

dxldt = P (t) x + B (t) u, du I dt = 5 (3.8) 

Let at,, tl be the fundamental solution matrix of the system 

dx f dt = P ft) x + B (t) u, du I dt = 0 (3.9) 

We shall form for system (3.8) the matrix F[t, T, @I, analogous to 

the matrix H, i.e. let 

F It, r,+31 = 2 [t, t + ‘cl Z-f It, t + 61 ; ; 
II Ii r 

where Er is a unit r x r-matrix. 

(3.10) 

The following statement, given without proof, is valid. 

Lemma 3.1. Let the elements bij(t) of the matrix B(t) have for t >O 

continuous and uniformly bounded derivatives bi j ( ‘) ( t). ‘Ihen the 

fulfillment of condition (3.1, r) for system (3.8) follows from the 
fulfillment of this condition for equation (2.4). In other words, from 

the positive-definiteness of the form (3.6) follows the positive- 

definiteness of the form 

(3.11) 

uniformly with respect to t >O. 

Note 3.1. If the requirement of uniform boundedness of the deriva- 
tives b. .(l)(t) is not satisfied, then the fulfillment of (3. I, T) for 

(3.3) & not follow from the fulfillment of (3.1, t) for (2.4). For 
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instance the scalar equation 

dx / dt = b (t) u, b (t) = sin kt for 2 jk - l)n q 1 < 2kn (3.12) 

satisfies the condition (3.1, T) for T = 27~. However, the system 

dx I dt == b (t) II, du i dt --7 5 

does not satisfy condition (3.1, T) for ‘I = 2~. 

We shall present sufficient conditions which guarantee the fulfill- 

ment of condition (3.1, T). Let the functions pii and bijft) have 

continuous and uniformly bounded derivatives up to the nth order, in- 

elusively. We shall examine the sequence of matrices ‘i(t) (i 

. * . , n) defined by the recurrent relation 

L, (t) = B (I), 
dLi_1 

Li (t) = 7 - p (QL, (t) 

We shall represent by the symbol 2 [j, tl the n-dimensional 

= 1, 

(3.13) 

vector, 

appearing as the jth column of the matrix and we shall examine the 

quadratic form 

where the symbol (I[j,, tl x 1 [ji, d 1 re p resents the scalar product of 

the corresponding vectors. 

Definition 3.2. Equation (2.4) satisfies the condition (3.2, T) if 

on each interval ta < t < to t f (to >O) at least one point t = t* can 

be found, for which there exists a set of numbers jk(k = 1, . . . , n), 

(l<j < N k L n x F) satisfying the condition 

(3.16) 
i. I=1 

where the value p > 0 does not depend on ta and t*. 

The following statement which follows 

of the controllability of linear systems 

from known results of the theory 

[4I is valid. 

Lemma 3.2. lhe fulfillment of (3.2, T) for equation (2.4) is a suffi- 

cient condition for the fulfillment of (3.1, T) for the same equation. 

Note 3.2. The set of numbers j, can depend on to and t*. If the in- 

equality (3.16) is satisfied in the strong sense, i.e. for aI t* >O 

and for each set of numbers ji+,.k (k = 0, . . . , n - 1; i = 1. . . . , r). 
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then (3.1, T) is satisfied in the strong sense for equation (2.4) (see 

p.976). A condition analogous to condition (3.2, T) was introduced in 

[121 for the stationary case, in the form of the independence of the 

vectors E&j’, . . . , Pn-1B[j3 as a “common state” condition when the 

optimal time response problem was studied. 

In [41, the common state conditions were considered as conditions of 

controllability of linear systems. In [161 conditions similar to (3.2.~) 

were used for the study of the local controllability of nonlinear 

systems. In [IV] the strong condition (3.2, T) was used as a sufficient 

condition of controllability and of continuous dependence of the para- 

meters of the time optimal control in nonstationary linear systems. 

Conditions of type (3.2. T) and strong conditions of type (3.2, T) Play 

an important role in the theory of optimal control (see [131 and other 

works on optimal control). 

We shall also mention 18,9,18-221, where the strong conditions (3.2, 

-r) were used for the solution of problems of analytical design of con- 

trol systems with first order approximation, for the solution of prob- 

lems of stabilizability of stochastic systems, in the study of problems 

of controllability and of fast response of nonlinear systems in linear 

approximation, in the investigation of the discontinuous character of 

the control for optimal time response in nonlinear systems, and in the 

problem of stochastic pursuit. 

We shall give a few more definitions and notations which will be 

necessary further on when the problem of prediction of the controlled 

object will be used (see p.986). 

Let T be a positive constant. We shall examine the 2 x n-matrix 

G[t, T, ~1 expressed in the following manner with the matrix Q(t) (2.5) 

and the fundamental matrix X[t,, tl of equation (3.1) 

G ft, T, 61 = Q It + 61 X It, t + 61 (t > T, --T<f) do) (3.17) 

We shall denote by the symbol /IcII_~ the norm of the vector function 

{Ci(~)} (i = l, . ..) k, (- 7~~~0) 

(3.18) 

Definition 3.3. Equations (3.1) and (2.5) satisfy condition (3.3, T) 

if the quadratic form of the variables hi (i = 1, . . ., n) 

1 i hiGIil [t, T, 61 I[ (3.19) 
i=l --5 
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is positive-definite (with respect to t). 

Condition (3.3, T) plays an important role in the prediction theory 

for linear systems 141.. Condition (3.3, T), according to this theory, 
appears as a duplication of the condition of controllability (3.1, T) 
(see P. 976). 

We shall call strong condition (3.3, 7) that condition which includes 
in addition to Definition 3.3. the requirement that for every j and for 
t >T the inequality 

i kigji it, z @I # 0 when i &e # 6 (3.20) 
i=l i=l 

is satisfied almost everywhere for - T < 6 Q 0. 

We shall establish the sufficient conditions which guarantee the ful- 
fillment of condition (3.3, T). 

Let us assume that the functions pi j (t) and qij(t) have continuous 

and uniformly bounded derivatives up to the nth order, inclusively. We 
shall examine the sequence of matrices Ri(t) (i = 1, . . . t n) defined 

by the recurrent relation 

Rl to = Q (47 z& (t) = 
dR,_1 
7 + Hi-1 (t) P (t) (3.21) 

Let r[j, tl be the n-dimensional vector representing the jth line of 

the matrix 

(3.22) 

and let us examine the quadratic fonu 

(3.23) 
i. H=l 

Definition 3.4. Equations (3.1) and (2.5) satisfy the condition (3.4, 

T) if on each interval t,, - T < t < to (tOaT) at least one point t=t* 
can be found such that there is a set of numbers jk (k = 1, . . . , n) 

l<j,<n x 1, which satisfies the condition 

l Ralman, R.E., New methods and Results in Linear Prediction and 
Filtering Theory. RIAS. ~ec~nica~ Report, 1. 1961. 
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i. k=l 
(v > 0) (3.24) 

i=l 

The following statement, which follows from the results of the pre- 

diction theory for linear systems [41 and appears as a duplication of 

Lenma 3.2, is valid. 

Lemma 3.3. Condition (3.4, T), satisfied for equations (3.1) and 

(2.5), is a sufficient condition for the fulfillment of (3.3, T) for 

these equations. 

Note 3.3. In this section references were made to some works related 

to the controllability and prediction theory for linear systems, and 

having a direct relation to the problems considered in this paper. The 

problems of controllability and prediction have, however, an extremely 

large bibliography which was not mentioned in the survey made above. le 

shall mention in connection with this L23.241, where efficient methods 

for the solution of problems of control and prediction are described, a@ 

also [251, where the problem of stabilization of mechanical systems by 

dissipative forces is considered. The character of the present paper 

does not, however, assume a sufficiently complete survey of the pertinent 

literature. 

4. Solution of the problem in linear approximation. We 

shall examine Problems 2.1 and 2.2. The following statement is valid. 

Theorem 4.1. If conditions (3.2, T) and (3.4, T) are satisfied for 

equations (2.4), (2.5) and (3.1), Problems 2.1 and 2.2 have a solution. 
‘l’he sought control law (2.6) has the form 

du 

dt= 
A (t) U (t) + _f rN(t,fi)y(t++)+M(t, 6)u(t++)ld+ (4.1) 

where the matrix functions A, N and M are continuous with respect to 

their arguments and are uniformly bounded with respect to t. ‘Ihen the 

motion x = 0, u = 0 will by asymptotically stable [5, pp. 174,1911, on 

the basis of the equations of the perturbed motion (2.4), (2.5) and 

(4.1) depending upon the moment t0 of the initial disturbance and upon 

the initial displacements x”(to +ti), u”(tO +6) (- T-<fifO), i.e. 

the inequal i ty 

i5i2 (t) + i Uj2 (t) <@e-a (‘-‘J SUP, [iXi'(ta + 6) + i uj2 (to + B)] (4.2) 
i=l j=l i=l j=l 

(tat,, a>O, f3=const>O) 
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will be satisfied. 

‘Ihe calculation of the elements a..(t), n. .(t, 6) and m. .(t, 6) of 

the matrices A, N and dl with the reqZred prZision reducei’to the de- 

termination of the fundamental matrix X[t,, tl of equation (3.1)) to 

the solution of systems of linear algebraic equations and to the solu- 

tion of Cauchy’s problem for a system of ordinary differential equa- 

tions for some known initial conditions. 

Note 4 A. From the conditions of Problems 2.1 and 2.2, we can limit 

ourselves to the determination of equation (4.1) only for t a-r. Thus 

we shalf solve these problems assuming that in fact the control a(t) 

which enters equation (4.1). was working in Problem 2.2 for 0 < t < 

to = T. and that in Problem (2.1) the functions u(tO + 6), r(tO + 6) can 

be considered as given arbitrarily and independently (to a-r, --r <,<6 < 0). 

In case of necessity, it can be assumed that equation (4.1) found for 

t > T. is extended continuously and in any possible manner until t = 0, 

and it can be assumed that the initial disturbance r(6), ~(8) is given 

independently (- T < 6 < 0). Problem 2.1 has many solutions; its solu- 

tion in the form of equation (4. I) is obtained from the solution of 

Problem 2.2, and gives in its calculation. apparently. a minimum of com- 

puting difficulties. 

We shall present a discussion, proving the validity of ‘Reorem 4.1, 

and showing the method of calculation of the elements a; ., n.. and rn' 

of equation (4.1). In agreement. with Note 4.1, we shall Legi;’ by sol :fng 

Problem 2.2. 

We shall examine the auxiliary problem of the analytical design of 

an optimal control system. 

Problem 4.1, Find the control law 5 = goit, X, ul which provides an 

asymptotic stability for the motion x = 0, u = 0 on the basis of the 

equations of disturbed motion 

dz! dt = P ft) x (t) + B (1) u (t), du I dt = 5 (4.3) 

and such that the control 5 = (Ott, x, d gives the minimum value of 

the functional 

for all initial conditions t0 > 0, x(to) = no, I = u. in the class 

f of continuous admissible cotitrols 5 = $[tt x, ~1. 
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In order to solve Problem 4.1. it is sufficient [3,6,8,261 to find 
some functions v”( t, x, u) and c”( t, X, u) satisfying the following con- 
ditions: 

1. The function v”(t, x, u), positive-definite with respect to x and 
u has an upper bound and increases uniformly indefinitely [5, p.361 
when (x, U) - m. 

2. The derivative (dvO/dt; (4.3). 5) of the function Y’ for a fixed 
control 5 along the motions x(t), u(t) satisfies the condition corre- 
sponding here to the optimal principle [2?, p. 1771 

( dv” ; (4.3), 5”) =i 
dt 

Ctj (t) ztxj + i [dtj (t) uj”i + eij (4 5i”Cj”l = (4.5) 
i, j=l i. j=l 

= mint (4.3), 5) + i Cij (t) ZiXj + i Idij (t) uiuj + Qj (4 tbjl =o 
i.j=l i, j=l 

(for 5 ti Z for all x, u, t >, 0). 

Then 5” is the optimal control and equation 

Is valid. 

The function v’( t, Z, U) must be sought in the form of a quadratic 
form of the variables xi, uk(i = 1. . . . , n; k = 1, . . . , r) 

v” (t, I, u) = VI0 (t, x, u) (4.7) 

where the coefficients ajs(t) (j = 1. . . . , n + r; s = 1. . . ., n + r) are 
time dependent. From equation (4.5) follow the equations 13.4.221 for 
the coefficients ajS( t) 

dxjs (1) 
dt = Eje [4 {“p, Y (d)l (4.8) 

where the cjS are polynomials of second order in apV. 

As a consequence of Condition 1. one should seek the solutions ajS 
of equations (4.8). bounded uniformly for t >, 0 and such that the form 

v*O(t, X, U) (4.7) of x and u Is positive-definite with respect to t. 

The statement deduced from the results mentioned 
3) is valid. 

above (see Section 

Lemma 4.1.. If equation (2.4) satisfies condition (3.2, T) Problem 

4.1 has a solution. 'Ihen the optimal control co has the form 
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(k = 1, . . . , r) 
(4.9) 

where the functions P,,(t) and ykj(t) are continuous and uniformly 
bounded with respect to t >O. 

We shall give the proof of Lemma 4.1. According to Lemma 3.2, the 

real izat ion of condition (3.1, T) for equation (2.4) follows from the 

realization of condition (3.2, T) for the same equation. According to 

Lemma 3.1, condition (3.1, -r) for system (4.3) follows from (3.1, -r) 
for (2.4). Thus, system (4.3) satisfies (3.1, T). According to the 

theorem on the controllability [41 and the estimates [211 this means 

that system (4.3) is uniformly controllable by actions 5 on each inter- 

val 7, i.e. for any initial condition 

to >, 0, z (to) = IO, u (te) = uo, i; ~i”o+ ~ .j~61 (4.10) 

i=l j=l 

it is possible to give a control c*(t) (to d t d t,, + T) which brings 

system (4.3) to the state x = u = 0 at the instant t = t e + T. Thus the 

quantity 

Jg+ [to, 20, %J, PI = (4.11) 
f&S n 

= cij tt) “i tt) "j lt) + I jJ idij tt) 
i, j:;l 

ui (t) uj (t) + eij (t) 5i* (t) 6j* (111) dt 

is uniformly bounded with respect to to >O. It is deducted from there 

[22, p.228; 28, p.391, that there are solutions {crj~(‘)} of equation 

(4.8) bounded on each interval 0 <t <T and satisfying the initial con- 

dition 

ajT (T) = 0 o’, s = 1, . . ., n + r) (4.12) 

From the uniform boundedness of cxjT(t) (0 < t < T, T < m) resulting 

from the boundedness of the quantity (4.11). it can be established by a 

limiting process that the sought solution {ajs(t)} of equations (4.8) 

which guarantees the fulfillment of Condition 1 for v2’, exists and is 

determrned by the equality 

ajS (1) = lim Cljf (t) as T-+oo (4.13) 

Similar limiting processes are considered in the framework of the 

problem of the stability of Ricatti’s equation [4]. In the Usual case, 
the limiting process (4.13) is considered in detail L291 in which the 
method of solving the problems of analytical design of control systems 
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on electronic models or ondigital computers is also evolved on the same 

basis (see the example at the end of the paper)*. 

Thus, under the conditions of Lemma 4.1, it is possible to find func- 

tions v” = t12 ’ and 5 = co satisfying equation (4.5). The function 

<Oh, x, .I is determined after the determination of vg” from the equa- 

tion 

a K dv$ 
ag dt; (4.3)~ 5) + jj eij tt) CiSj} = 0 

i,j=l 

(4.14) 

From (4.14) and from the properties of ajs(t) established earlier, 

there follows that the control co has indeed the form (4.9). Finally, 

the uniform asymptotic stability of the linear optimal system (4.3) 

dx / dt = P (t) x + B (t) u, du/dt =t” [t, x, u] (4.15) 

i.e. the fulfillment of the inequality 

uj2 (4 < (i xia (44 + fJ uja (to) fiema(+‘*) (4.16) 

i=l 
( ‘=; 0 b > 0 Zonst, t > :‘p a 9 0-O 

follows from the remark that system (4.15) has 130. p.3101 a Positive- 

definite Liapunov function v = vg” having by virtue of that system a 

negative-definite derivative 

‘$ i (4.3)1 5) = - [i cij (t) xixj f i dij (t) UiUj f i eij(t)~“i~j”] 

i,j=l i,j=l i.j=l 

Thus the validity of Lemma 4.1 is verified. 

We shall examine now the auxiliary problem of observation. 

Problem 4.2. Find a linear operator YC1) [t, y(6), U(IP)I defined for 
t >T for continuous vector functions {yj(+3)) (j = 1, . . . . I), {US(+)) 

(s = 1, . . . . r) and satisfying for the solutions n(t), u(t) of equations 

(2.4), the condition 

T 0) = Y(1) It, y (t + fi), u 0 + S)l (4.17) 

l Let us point out that for periodic P(t), B(t), and o( 1) the functions 
aj,( t) become periodic. 
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Ihe following statement is valid. 

Lemnta 4.2. Let system (3.1) and (2.6) satisfy condition (3.4, 7); 
then Problem 4.2 has a solution, and in (4.17) the operator Ycl) can be 

constructed as 

Y(I) ft, Y W, u WI = i (D’ (t, @) y (9) + K (t, 6) u PI, de (4.18) 

where, consequently, the n x E- and n x r-matrices Y and K have elements 
Yij(t, 6), 'ij(t, ~,) continuous and bounded for t2-r. 

The validity of Lemma 4.2 is found from the results of the general 

prediction theory for linear systems t41. We shall give the proof of 
lemma. Let us consider first one more auxiliary problem. 

Problem 4.3. Find the n x l-matrix V(t, 6) defined for t >T and 

satisfying the condition 

0 
2, = 

5 
.. V (t, 6) G [t, z, 61 xOd@ (4.19) 

--1 

where the matrix G is defined by the equality (3.17) and x0 is an arbi- 
trary n-dimensional vector. 

In presence of conditions (3.3. T) Problem (4.3) has a solution [41, 
and consequently, according to Lemma 3.3, this problem has also a solu- 
tion when conditions (3.4, 7) are satisfied. The matrix V(t, 6) can be 
sought in the form 

$, (6 6) = A* (i) G* [t, 2, 61 (i = 1, . . ., n) (4.20) 

where h*(i) is a constant n-dimensional row vector. From (4.19) and 
(4.20) follows the equation for h*(i) 

n 
8ij = h* (i) 

s 
(G* [t, z, 6) G [t, z, 6J)[j’d8 (4.21) 

--ii 

where gii = I and Eij = 0 for i f j, i = 1, . . . , n; j = 1, . . _, n. The 
determinant A(t) of the n x n-matrix 

0 

G*,G de 

for conditions (3.3. ‘c) and uniformly for t >T satisfies the inequal- 

ity 

I A (4 I > 8 (e > 0 = const) (4.22) 
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There follows that equation (4.24) can be solved and that the sought 

matrix V(t, 6) determined bv the equality (4.20) nil1 have continuous 
and uniformly bounded elements u ijU* 6). 

The solution x(t) of equation (2.5) has the form (3.3). From (3.3) 
we obtain the eouality 

or from (2.5) and (4.19) 

0 

s v (t, t-q y (t + 6) de = (4.23) 

--t 
0 8 

= z 0) + i {IV (t, 6) Q I+@I X it, s+61 X-’ It, t+qf B (t+q) a (t+q) r&+4 

--5 0 

Changing the order of integrations on the right-hand side of (4.23) 
and replacing q by 6 , we obtain 

2 0) = [ V (r, 6) y (t f 8) d@ + f {i V (t, q) Q (t + 7) X If, t + qf dq} x 
-7 

x x-1 [t, t + 6,; (t-y 6) u (t + 6) d6 

If we write 

Y (t, 6) = v (t, 9) (4.24) 
9 

K (t, 14) = 
Is 

6’ (tv 9) Q (t + rlf X lt, t + ql dq 
1 

X-’ ft, t i 61 B (t -t- 6) 

--5 

we obtain the operator Y( 1) (4.18) which satisfies the requirement of 
Lemma 4.2. This verifies the validity of the lemma. 

Note 4.2. The solution of Problem 4.2 is not unique. The solution de- 
scribed above, resulting from [41 and leading to the solution of the 
linear equation (4.21) gives, apparently, some small computation diffi- 
cultiea. However, from the conditions of the problem, it might appear 
to be expedient to seek the matrix function V( t, 6), determining the 
operator Y( l) by the equalities (4.24). in the forat of discontinuous 
functions. i.e. as a matrix with piecewise constant elements vij(t’ 6). 
or as an impulse-matrix. This might lead to a simpler synthesis of the 
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system. Such solutions can be obtained if, for instance, the results of 

t211 are used in the solution of Problem 4.3. We shall examine briefly 

the case of 1 = 1 in order to simplify the calculations. We shall first 

seek the matrix V( t. 6). i. in the present case (for 1 = 1) an a- 

dimensional column vector V Til (t, 6) = {v(t. 6)) in the discontinuous 

form. The matrix G[t, T, ~1 is for z = I a row vector C[~I [t, -r, ~1 = 
Q, a,) (i = 1. ..*, n). According to Problem 4.3. it is necessary, 
thus, to find the vector iv;(t, 8)) having a discontinuous-type character 

with respect to 6 for - v <“6< 0 and 

here, the equation 

0 

liTI I 

g1a . 

=I2 
‘i 

. . . 

%O 2, b?*, * 

From (4.25) we obtain n systems of 

II 

&ij = 

s 

gj(', 81 Vi (t, 6) de 

satisfying equation (4.19), i.e. 

* * g,z*1 210 

. . . . - . 

* . &&*?I /j II . II 

dQ 

=nr! 

1 inear equations 

(4.25) 

(i = i ,..., 72; i = I,..., n) (4.26) 

We shall examine the ith system and we shall look for the solution 

“i 
o of equations (4.2g) which satisfies the condition 

max (1 vi0 (t, 6) 1 for -t < 6 < 0) = min (4.27) 

The solution of the problem (4.26) and (4.27) exists for every i when 

conditions (3.3, T) are satisfied (and is therefore of the discontinuous 

type [141). We shall assume, however, that the matrix G[t, T, ~1 satis- 

fies condition (3.3, t) in its strong sense (see p. 979). For this, it is 

sufficient that condition (3.23) of Definition 3.4 be satisfied for all 

t* E LO, 0~1. Then th e solution vio( t. 6) of the problem (4.26) and (4.27) 

is unique and is defined by the equality 

vio (t, 6) = CZ sign [i hi’gj (t, @}) (- z < 6 < 0) 
j=l 

where a, hjo are solutions of the problem 

1 
- = min, 

a { ( 1 i J+jgj (b 6) 1 de} for i hjsij = ki I + 1 

-: i=l j=l 

Substituting into (4.24) the discontinuous function V which was found, 

we shall find an expression for K, which in many cases can be simpler 
than in the case of the continuous function V which was considered 

earlier. 

We shall now seek the function V El3 in the form of a matrix with 
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impulse elements 

Vi (tl 8) = $j Uki (t) B (6 - Tki (t)) 
X=1 

where 6 represents the &function. For that purpose, we shall seek [211 
the elements vi( t. 6) satisfying equations (4.26) in the form 

0 

6,, = 
f 

gj 05 0) d’li (t3 61 (dqi (t, 8) = ui (tf *) de) (4.28) 

--t 

where dfli is the measure of Stieltjes; we shall also require 

0 

s 
/ dqi (t, 6) 1 = min (4.29) 

--+ 

The solution vi0 of the problem (4.28) and (4.29) is determined from 
the condition 

YiO (t, 9) = x c$ (t) 6 (6 - Zki (t)) 
k=l 

(4.30) 

where a =Z!aAij is the quantity 

a-l = min,, [max, (15 ajgj(t, 6) I), - z d fi B O)] (4.31) 
j==l 

for z ($ Bij) = hi = $ 1 

and vk i are the points @E L- T, 01, where the quantity 

reaches its maximum (hjo Is the solution of the problem (4.31) and the 
number m may depend on t and i). 

Let the impulse matrix V(t, 6) be found by the described procedure. 
Then the first component of the operator (4.18) takes the form of the 
vector 

m(i) 

{ 2 C$ (t) Y (t - ‘d (t)) } 
k=l 

(i = 1, . - . , n) (4.32) 

and this can be useful for the synthesis of the system. The second com- 
ponent, determined from (4.24). also appears in many cases to be more 
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convenient than in the cases described earlier. 

It is now possible to carry out the construction of equation (4.1) 

and verify simultaneously the validity of Theorem 4.1. For this purpose 

it is first of all necessary to substitute into equation (4.15) the 

optimal control co (4.9) found in the solution of Problem 4.1. We shall 

obtain a system of the form 
(4.33) 

dz / dt = P (t)z(t) + B (t) u (t), du / dt = P(l) (t) 2 (t) + I?(‘) (t) u (t) 

asymptotically stable, satisfying conditions (4.16) and minimizing the 

integral J, (4.4). Then, in the second group of equations (4.33), x(t) 

should be expressed as a function of y(t + fi) and u(t +fi) (-T< 6 <O) 

with the use of the operator Y(,) (4.17) and (4.18). 'Ihen we shall ob- 

tain the control law in the form of equation (4.1) in which the func- 

tions A(t), N(t, 6), M(t, 6) are expressed in a known manner as func- 

tions of P”‘(t), R”‘(t), Y(t, tb), K(t, +). ‘Ihe properties of the 

functions A, N, M, which are verified by 'theorem 4.1 follow from the 
properties of P (I), B(l), Y(t, 6), K(t, 6), established earlier. Now,in 

order to conclude the proof of Theorem 4.1 it is sufficient to note that 

the closed system 

$ = P (t) z (t) + B (t) u (t) (4.34) 

du 
- = A (t) u (t) + f {N (t, a) Q [t + al z (t + 6) + M (t, 6) u (t + 9)) de dt 

-7 

satisfies condition (4.2) and the requirement of Problem 2.2 concerning 

the minimum of the integral J (2.9), since system (4.33) has analogous 

properties; whatever the initial conditions +,(t,, + fi), uo(to + 6) 

(- T< 6 \<O) of the system might be, its motion will coincide with some 

motion of the system beginning at the instant t = to + T. 

'l'his follows directly from the method of construction of equation 

(4.1) which was described. l'he validity of Theorem 4.1 is proved. 

5. Solution of Problems 1.1 and 1.2. We shall examine first 
Problem 1.1 and we shall formulate a theorem on the solution of this 

problem on the basis of the solution given in Section 4 by its first 

order approximation. 

Theorem 5.1. If conditions (3.2, T) and (3.4, T) are satisfied by 

equation (2.4), (2.5) and (3.1) of the linear approximation of equa- 

tions (1.3) and (1.4), Probl em 1.1 has a solution which can be obtained 

from the solution (4.1) of this problem in the case of the linear 

approximation 2.1. 
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In fact, according to lheorem 4.1, the system (4.34) which can be 
constructed for conditions (3.2, -r) and (3.4, T) satisfies condition 
(4.2) and has uniformly bounded coefficients. ?he system 

dx 
- = p It, x (t), u @)I 
dt (5.1) 

du 
- = A (t) zz (t) + 5 (N (t, 6) y (t + 9) + M (t, 6) u (t + @>> de dt 

(5.2) 
--+ 

in which the vector y(t) is determined by equation (1.4) differs from 
system (4.34) only by terms whose order of smallness in xft + 6) and 
u( t t 6) is uniformly greater than the first (see (2.3) ). According to 
Learna 33.1 k, p.1911, system (4.34) admits a functional v(t, x(6), 
u(6)) which satisfies definitions of the type (33.4) to (33.6) [5,p.192 
This functional retains its properties of a Liapunov function in the 
neighborhood of the point x = 0, u = 0 also for system (5.1) and (5.2) 
as a consequence of condition (2.3). It follows that the motion x = 0, 
u = 0 is asymptotically stable on the basis of the equations of per- 

3. 

turbed motion (5.1) 
5.1 proved. 

and (5.2). ‘Jhus Problem 1.1 is solved and Theorem 

We shall examine now Problem 1.2. We shall assume that in the 

neighborhood of the 
q[t, xl and o[t, x, 

point x = 0, u = 0 the vector functions pft, x, d, 
u, 53 from equations (1.3) and (1.4) and from the 

functional (1.8) can be expanded in power series with continuous co- 
efficients uniformly bounded with respect to t. 

'JIhen, under the conditions of solvability of Problem 4.1 in the form 

of equations (4.15) and (4.9), which guarantee the fulfillment of con- 
dition (4.16), there exists an equation which can be constructed as a 
converging power series in x and u 

dtt 
- = ii [t, 5 (t), u (t) I= P(l) (t) 5 (t) + B(l) (t) u (t) -+- 
dt 

+ 2 pkj (t) $1 (t) . . . J;p (t) I+ (t) . . . u,kr (t) (5.3) 

(k+j=2,. ..; Jo+.. . $ in = j; kl + . . . f k, = k; pi (t) 
is an r-dimensional 
vector function) 

which guarantees the asymptotic stability of the motion x = 0, u = 0 and 
the minimum of the functional (1.8) on the basis of the system of equa- 
tions (1.3) and (5.3) of the perturbed motion. 

This result, concerning optimal nonlinear stabilization, and which 

we shall use here, was established first in kl for the stationary case 

and extended afterwards [91 to the general nonstationary case. The 
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problem was solved by the method of Liapunov functions with the use of 
some ideas of dynamic programming. V.I. Zubov informed the author that 
be has obtained an identical result for the nonstationary case by using 
the classical calculus of variations. 

In order to solve Problem 1.2, one more result related to the pre- 

diction problem for linear systems will be necessary, A detailed 

analysis of this last problem is beyond the scope of the Present paper 

and will be studied in a separate work. We shall give here only the 

necessary result for further use. 

We shall examine the nonlinear problem, analogous to Problem 4.2 of 
linear prediction. 

Problem 5.1. Find the operator Y[t, y(B), u(e)] defined for t >T 

for the continuous vector functions {yj(6)} (j = 1, . . . . 11, {u,C~)) 
(s = 1, . ..) r) which lie in a sufficiently small neighborhood of the 
point x = 0, u = 0 and satisfying for the solutions x(t), u(t) of equa- 

tion (1.3) (which lie in that neighborhood) the condition 

x (4 = y it, y (t + q, z-3 (t + WI 

where the vector y(t) is related to n(t) by equation (1.4). 

(5.4) 

'Ihe following statement is valid. 

Lemma 5.1. Let system (3.1) and (2.5) of the first order approxima- 

tion of equations (1.3) and (1.4) satisfy condition (3.4, T). Then 

Problem 5.1 has a solution, The operator Y which is sought can be con- 

structed as a series 

y 16 y(a), u (+)I '= ; Y{k)It,Y @), u WI (5.5) 
k=l 

‘Ihe first term of the series (5.5) can be chosen identical to the 

operator Y(I), which is constructed for problem 4.2 according to Letrrsa 

4.2. The other terms of the series (5.5) will then be determined from 

the systematic solution of the system of linear algebraic equations 

where the kth term of the series has in the neighborhood of the point 

X= 0, u = 0 the kth order in x and u. 

'lhe following statement follows from the results which were found. 

'theorem 5.2. Let equations (2.4), (2.5) and (3.1) of the linear 

approximation of equations (1.3) and (1.4) satisfy conditions (3.2, T) 

and (3.4, T). Then Problem 1.2 has as a solution in the form of the 

equation 
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du Idt = U [t, x (t + 8). u (t + S)] (5.6) 

the right-hand side of which is constructed in the form of a series 
which converges in a small enough neighborhood of the point x = 0, u=O. 
‘lhe linear approximation of equation (5.6) can be chosen in the form of 
equation (4.1) which solves Problem.1.2 in a first order approximation. 

In order to be convinced of the validity of Theorem 5.2, it is suffi- 

cient to choose as equation (5.6) the equation 

(5.7) 

in which the vector function A is determined by the right-hand side of 
equation (5.3), the operator Y is determined by condition (5.4) and the 
vector y(t) is related to the vector x(t) by equation (1.4). 

We shall conclude here the discussion of the possibility of a solu- 

tion ir- the nonstationary case of Problems 1.1 and 1.2 on the basis of 
their first order approximation. 

6. Solution of Problem 1.1 in the stationary ease. The 

solution of Problems 1.1 and 1.2 in the stationary case, i.e. in the 
case in which the functions p, q and o of (1.3), (1.4) and (1.8) or 
their first order approximations P, B, Q, o(r) do not depend directly 
on time t, are obtained naturally as consequences of Theorems 5.1 and 
5.2 formulated in Section 5 for the general case. However, it is 
possible to give here some sufficient conditions of solvability of prob- 
lems more general than those which follow directly from 5.1 and 5.2, We 
shall consider first the direct consequences of Theorems 5.1 and 5.2. 

Let the matrices P, B, 0 and the quadratic form o( 1, have constant 
coefficients pij, b. ., 

v 

qiji cij* dij, eij* 

Definition 6.1. Euuation (2.4) satisfies condition (6.1, 0) if there 
exists a set of numbers jk (k = 1, . . . , n; 1 < jk < n x r) for which 
the vectors 1 tjkl are linearly independent. 

Here the vectors 1 Ejl are columns of the matrix (3.14) whereby the 
matrices Li in the stationary case have the form 

L, = Pi+B (6.1) 

Definition 6.2. Equations (3.lf and (2.5) satisfy equation (6.2, 0) 

if there exists a Set of numbers jk( k = 1, . . . , R; 1 < jk <n x l), for 
which the vectors rLjk-1 are 1 inearly independent. 
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Here the vectors r [j] are rows of the matrix (3.X?), whereby the 

matrices Ri in the stationary case have the form 

Hi r= QJ+-1 (6.2) 

Consequence 6.1. If the stationary equations (2.4), (2.5) and (3.1) 

of the linear approximation for equations (1.3) and (1.4) satisfy con- 

ditions (6.1, 0) and (6.2, 0) Problem 1. X has a solution. Equation (4.1) 

which determines the control law in the linear approximation, can be 

chosen stationary. If the functions p and q of equations (1.3) and (1.4) 

do not depend directly on time, then the nonlinear control law (5.2) can 

also be chosen stationary. 

Consequence 6.2. Let us assume that the stationary equations (2.4). 

(2.5) and (3.1) satisfy the conditions (6.1, 0) and (6.2, 0). Then 
Problem 1.2 has a solution. If the function o(1) does not depend 

directly on time either, the linear approximation (4.1) of the optimal 
control law is also stationary. If the functions p, q and o in (1.3), 

(1.4) and (1.8) do not depend directly on time, the nonlinear control 

law (5.6) is stationary, 

We shall now examine Problem 1.1 in the stationary case, and we shall 

formulate for its solvability a criterion which will take into account 

the known structure of the solutions in the stationary case of equations 

(3.1), in a manner similar to the one used for problems of analytical 

design of control system in M. 

We shall denote by the symbol L[j , 

space of the n-dimensional vectors 1 ]k 1 ‘i’ k3 ‘6 ‘“i:;:!. I:‘“a’;$;EJ;b;; 

s = 0, r, 2r, . . . . (n - 1)r). 'Ihe symbol R[l, ..,, wi enoe e 

linear sub-space generated by the vectors rtjl (j = 1, . . . . n x l), i.e. 

/ICI, . . . . d is a sub-space generated by all the row vectors r[jl of the 

matrix R (3.22). Fe shall denote by the symbol I+@ some direct comple- 

ment to the n-dimensional vector space of the original sub-space K_ of 

the matrix I’ generated by those of its eigenvalues which have negative 

real parts. 

‘In the case of a simple structure of P, the sub-space K+O is a direct 

complement of the sub-space K_ generated by the eigenvectors of the 

matrix P, which correspond to the roots pi with negative real WrtS of 

its characteristic equation 

lP-pEI:=O (6.3) 

In the general case, K+e is a direct complement of the sub-space K_ 

of the initial conditions x,,, which generate those trajectories x(r,,t) 

of equation 
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dx / dt = Px (6.4) 

which converge towards the point x = 0 for t - m. 

‘Ihe following statement is valid. 

‘Reorem 6.1. Problem 2.1 can be solved if a set of numbers jl, . . . , j,,, 

can be found such that the enclosure 

K,, CL Ii19 * - -9 iml c fi [I, . . ., nl (6.5) 

is valid, 

‘Ihe control law, which stabilizes the object (2.4), can be chosen in 

the form 

du 
- = Au 0) + dt (6.6) 

-7 

for which A is a constant matrix, the matrices N and M are continuous 

and -r is an arbitrary chosen positive number. 

We shall give the proof of the theorem. It is then sufficient to 

examine the case for which L[jl, . . . , jml does not coincide with the 

whole space ri (i = 1, . . . . n) because in the opposite case Theorem 6.1 

follows directly from Consequence 6.1. Now let us assume that the dimen- 

sion of L[jl, . . . . j,,,] is smaller than n. The proof of Theorem 6.1 is 

made in a similar manner to the proof of Theorem 4.1 with only some 

singularities which we shall mention hnre only briefly. First of all we 
shall make the linear transformation 

x=Dx, (6.7) 

which yields the coordinates x [II controlled by the actions u. (k = 1, 

. . . . m). (A detailed analysis Lf the transformation (6.7) exce% the 

frame of this paper.) The transformation (6.7) is chosen such that in 

the new coordinates x l ={x [ll, Z [I * 1 equation (2.4) is decomposed 
l l 

into the system 

dx,[l’ 
- = P(~,x*[‘l + q*jx* 

dt 
[*I + Byp*[“, 

dx,c21 
- 

dt 
= P(*)x,[*l (J2 = 0) (6.8) 

l 

where x 111 is an s-dimensional vector, u Cl1 an m-dimensional vector 

LJ, x’[*l 
l 

is an (n - s) -dimensional vector. the matrix PCs) has only 
eigenvaiues with negative real parts, and equation 
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satisfies condition (6.1, 0). The decomposition of (2.4) into (6.6) is 
possible because of the left enclosure (6.5). An analogous transforma- 

tion is made in [Sl. (We shall note that in [61 
there is an inaccuracy, pointed out by Zubov: in 
the transformation of the form (6.7) some terms 
are omitted. This inaccuracy in the proof in [6] 
can, however, be corrected.) As a conseQuence of 
(6.1, 0) system (6.9) can be stabilized by the 
control 

ffu,I” / tit = P&*[” (t) + B&*[” (t) (6.10) 

solved with the auxiliary problem 4.1. On the 
other hand, it can be verified that the right 
enclosure (6.5) guarantees the fulfillment for 
equations (2.5) and (3.1) of conditions for 
which it is possible to find an operator 

y* [Y(W. u(e)1 satisfying the condition 

&‘(t) = y, [y 0 + w, u (t + @I = 
0 

Fig. 1. 

= s {Ya (@I Y 0 + 6) + KL (+) u 0 + 6)) df) 0 z 4 
--z 

where y(t) is related to x(t) by (2.5). x(t) and u(t) are the displace- 
ments of the system (2.4), and T is an arbitrarily chosen positive 
number. It is now possible to verify that the system 

dz,[‘] 
-= 

dt 
Pg~z.[” (t) + Pf2,+21(t) + BU~u,r’l (t) + B u[2’(t) 

@) l 

dz*fSl 

dt 
= P(&’ (0 + ~,,)Uf’O) (6.il) 

du,[‘] 
- = B~l~*u,c’l (t) + 

s 
’ {& IY, WI y (t + a) + 0 0 + WI de, 

du la] 
+ =- u* Cl1 

dt 

where u [21 -7 , the complement of u [ll up to the vector u , satisfies all 
the con&tions of Theorem 6.1, &ich completes the proor of this theorem. 

From ‘lheorem (6.1) follows the statement. 

Theorem 6.2. If the stationary equation of the first order approxima- 

tion (2.4) and (2.5) satisfies conditions (6.5), Problem 1.1 has a 
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solution; furthermore, the stabilizing control law can Se chosen in the 

fonn of equation (6.6) 

7. Example. 1Ve shall. examine R simple illustrative example. Let us 

assume that it is required to stabilize a pendulum in its high, unstable 
equilibrium position by means of a moment u(t) applied on its axis. It 
is furthermore possible to measure only the deviation y(t) of the 
pendulum from the vertical, hut neither the derivative i(t) nor the 
angular velocity of the oscillations of the pendulum (Fig. 1). 

J,et 4p = x1, 4 = x2. Then by normalizing, if necessary, in an appropri- 
ate manner the scales of time, coordinates and forces, we shall write 
the equation of the perturbed motion of the considered object in the 
form 

dxll dt = z,, dx, I dt = sin x1 + I( (7.1) 

We shall choose equation (1.4) of feedback signal in the form 

y (t) = sin x1 (t) (7.2) 

The problem consists in the choice of a control. law (5.7) 

du / dt = QU (t) + i (n (6) y (t + 6) + m (6) u (t -t 6)) d4 

-7 
(7.3) 

for which the unperturbed motion XI = x2 = u = 0 is asymptotically 
stable on the basis of the equations of the perturbed motion (7. I), (7.2) 

and (7.3). 

Equations (2.4) and (2.5) of the first order approximation for (7.1) 
and (7.2) have the form 

dx, / dt = x2, dxz t dt = x1 + u, y = 51 (7.4) 

We shall verify the fulfillment of conditions (6.1, 0) and (6.2, 0). 

The vectors 1 [I] and 1[21 have the form 

and, consequently, these vectors are linearly independent. Condition 
(6.1, 0) is satisfied (the form (3.16) has here the form h,* + A,*). The 
vectors r[I] and r[21 have the form 

(1, 01, (i, 0) (; A) - (0, 1) 

and are also independent. Condition (6.2, 0) is satisfied (the form 



(3.23) is of the type Al2 f A,‘). Thus Problem 4.1) can be solved. iye 

n 

shall choose the form o (I) as 

‘0’(I) ._.. I, 2 +. $ _+ U2 + i” 

and we shalf seek the control g”[xl, x2, ul 

minimizing the integral 

0 

for the motions of system (7.4) and 

!fe shall seek an optimal Liapunov 

11’ (4.5) and (4.7) in the form 
function 

(7.5) 

Fig. 2. 

where a. = const. equations (4.8) take here the 

form (by changing dt into - dt, L;bhich is convenient in order to nse 

method c29l) for the calculations (see earlier p.964) 

eta,, ! ar -=: Z&X,, -- aiaa 1 1, du ,alctl .- all+a,-a,,~,, 

4afa,,idi --= 2a12,-a,,2 + 1, da,,/ dt ---a23 +a,,-a&,, f7.Q 
dafa, f df --I !Za 2a --. a ?:i‘ -7 1 t daap, i dl :.: a1a + asp - a,3a,, 

It is necessary to find a point of rest {a .o) of equations (7.6) 

(where daijjdt = 0) for which the form r* (fofla. = a.?) is positive- 

definite. In the present ease it is possible to iilve Afrectly the 

system of equations obtained from (7.6) for daij/dt = 0. We shall give, 

however the results of the calculations made according to method 1291 

which is valid for more complicated systems of higher order. .4n approxi- 

mate solution of the problem on the computer MN-7 gave the follawing 

values: 

uII -l;’ 11.17, aZ8 -- 20.05. aa, = 3.21, ai _T 9.88, or-= 4.60, a2a== ‘1.60 

(In Figs. 2. 3 and 4 are given the oscillograms of the corresponding 

trajectories of the auxiliary system of equations, having the Same point 
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of rest aij as (7.6.) 

The calculation made according to method [29l on a digital computer 

gives a very accurate value of the quantities aiiO. 

Diagrams of the transient responses for equations (7.6), calculated 

on the computer “Ural 1” are given in Fig. 

aijo for t 
5. The values aij(t) giving 

- m are here the following: 

a,,.-11.1333433. a,a = 10.1333433, a,, : 10.1333433 
a,:,-: 4.6115817, as = 4.61158i7, a,, -= 3.1973682 

This is by far superior to the accuracy required in practice. 

The sought control co has here the form 

5” = - (u13x1 + oz3x1 -I- a,.& = - (4.6116x, + 4.6116~~ + 3.1974u) (7.7) 

Consequently, the equation which solves Problem 4.1 has the form 

du 
-=- 
dt 

4.6116~~ - 4.6116~~ - 3.1974u (7.8) 

It is now necessary to consider Problem 4.2. Since the coordinate 

x,(t) is known in the linear approximation on account of (7.4) and since 

its value can be fed into the control, there is no purpose apparently 

for introducing it into the control law (7.3) by means of y( t f 6). We 

shall assume that the quantity xl(t) enters directly the element which 

forms t4( t). This will only add’a term bxl(t) in equation (7.3). Then it 

becomes sufficient to represent only the quantity x2(t) by y( t + 6) 

(- T <8600), i.e. it is necessary to seek in Problem 4.2)an operator 

Y( 1) for which 

xa (t) = Y(,) lY (t f- 6), u (1 + S)l = 
0 

= 

s 

{Y(@) y (~-I-~)-/-~(~) u (t + 611 da 

-7 (7.9) 

where Y(6), K(6) are scalar func- 

tions which do not depend direct- 

ly on time, on account of the 

stationary nature of equation 

(7.4). The fundamental matrix 

X[t, t + 61 of the solutions of 

equations (3.1). i.e. in the pre- 

sent case of equation 

Fig. 3. 

dxl _ 
-&- - xar do 

-& = Xl 
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has the form 
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(7.10) 

Let us choose “I = 1. Then Problem 4.3 is transformed into the prob- 
lem: 

Find a function V(6) (- 1 ,<# Q 0) satisfying condition 

0 

%l = 
c 

Y (3) (a,@0sb6 -+- q, SinrIb) & 

-Ll 

or 

0 it 
OZ - 

\ 
v (f))df)de, 1 = ’ v (ip)siahiki~ 

\ 
(7.12) 

l . 
-.I -rl 

According to (4.20) it is necessary to seek V(6) in the form 

V (6) = h,cosh@ + ha&h@ (7.12) 

From (7. IX) and (7.12) follow the equations for A, and h, 

Al [ 

0 
cod@) d6 + A, 

-% 
\ 
corh 6 sinht?df) = 0 

“1 

I1 [ 

0 

co& (6)s~ (9) dtE + I, 
c 

sini? @de = i (7.13) 

-11 -Ll 
Hence A, = 7.358, A, = 4.329. Then, in accordance with (4.24), we 

conclude that the operator (7.9) is determined from the functions 

Y (8) = 7.358coabf) + 4.329sinh@ 
a 

K (6) = 
s 

((7.%%cothTJ + ~.32Q~h~)~(~ - @)) drj 

-1 

(7.G) 

BY comparing (7,8), (7.9) and (7.14) we come to the conclusion that 
the stabilizing control law in linear approximation has the form 

0 

du -&- = - 4.61162, (1) - 3.1974u (t) - 4.6116 
c 
-11 

{(7.358=&6 + 

+4.32brint1iQ xX (t -f- 6) + {i (7.358~~~ + 4.329uhbq)ti(q - 6) dqu(6) 
> 

d6 

11 

The closed nonlinear system will be described by equations (7.1). 
(7.2) and 
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0 

du 
A= 
dt 

- 4.6116 y (t) - 3.1974~ (t) - 4.6116 
s( 

(7.358~~116 +4.329 sin&) y (t + 6,) + 

-1 

8 

-1, u (L?)[ /(7.358waq + 4.329tiq}ti(q - 8) dq) df) (7.15) 
J I 
-1 

We shall note that 

equat.ion 

is not possible here, 

the stabilization of the system (7.1) by means of 

du 
- au 0) + bs, 0) dt- 

since the characteristic equation 

(7.16) 

-p i 0 

1 -9 i =o 
b Oa-p 

of the system (7.4) and (7.16) for any choice of constants a and b has 

roots with a positive real part, and consequently the corresponding non- 

linear system would also be unstable for any addition to (7.4) and (7.16) 

of nonlinear terms in y(t) and u(t). This substantiates here the neces- 

sity of introducing a delay into the control law (7.15). if it is 

assumed, as was done in the formulation of the problem, that it is not 

possible to measure directly the quantity j(t) (or $(t)) (on account of 

the presence of a disturbance of high frequency, for instance). 

The author is grateful to V.E. Tret’ iakov for making the CalCulatiOnS, 

oscillograms and diagrams given in this section, and to Iu.Sh. Gurevich 

for programming the computer “Ural 1”. 
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